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1. SUMMARY AND PRINCIPAL CONCLUSIONS /_n

This paper comes from a workshop held at Purdue University and
reflects the participants views as filtered by the author. The principal partici- ,,-

pants are listed at the end.
The goals of the workshop were: (a) to provide an interchange between 4,

different groups working on very large least squares problems, (b) to provide "
an interchange between computer scientists involved with supercomputer sys-
tems and scientists using supercomputers and (c) to assess the state of the art
in.snIdnt 4Lrge least squares problems. This workshop is one of a series
held by the Purdue Center for Parallel and Vector Computing and supported
by the Army Research Office, the National Science Foundation and the Office
of Naval Research. The number of participants was kept small so as to allow
for discussions in depth and complete expressions of views.

Twelve sources of very large least squares problems were identified-(re..
Secti-on-2), the ones principally involved in the discussions were

Geodetic surveys
Photogrammetry;
Molecular structures
Gravity field of the earth, o7 L
Partial differential equations,

A brief review of the current methods used in these problems is given in Sec-
tion 3.

There were extensive discussions of issues of both a general nature and
specific to the very large least squares problem. These issues involved the
least squares problems, methods for their solution, the use of supercomputers
and future developments. These are detailed in Section 4, the principal con-
clusions are summarized below. This paper summarizes lengthy discussions

• "and reflects their general tenor; no participant is likely to agree in detail with
all statements made here.

A. Problems. There are several important least squares problems that require
supercomputer power. There is substantial similarity in the structure of the
problems from different areas; the matrices possess a block structure (some-
times at two levels) which reflects a "local connection" nature in the underly-
ing physical problem.

B. Methods. Most of the standard least squares methods are being used some-
where. There is a definite need for a comprehensive software package for
least squares that includes sparse matrix facilities.

, Reprinted i P ermission from Technical Repon Nwuber 464, Depanrnemn
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C. Computations. Programming effort is more often a bottleneck than com-
puter time, but neither are likely to be dominant, (the most common dom-
inant effort is to get the data). The preprocessing, postprocessing and general
inefficiency in using masses of data on several devices is an important
bottleneck. Current pipeline machines and attached processors sacrifice por-
tability and clarity to high efficiency.

D. Future. The most promising area for algorithm improvement is in the han-
dling of sparsity. There are important least squares problems that require
much more resources (including computer power) than are currently avail-
able. Supercomputer architectures are not going to stabilize, so it is impor-
tant that high level, somewhat architecture independent languages (even a
clean Fortran extension) can be used by scientists. Reasonable portability is
essential for many reasons, including the success of "national resource" super-
computer centers. A very critical need is to make supercomputers easier to use.

2. VERY LARGE LEAST SQUARES PROBLEMS
We first describe the very large least squares problems that were con-

sidered. References are given for more information about most of the prob-
lems; there were a few of them about which very little was known first hand.

A. The Geodetic Survey Problem. The existing geographical survey points are
not completely consistent because of errors in the measurements. A classical
procedure has been to adjust the measurements to obtain a best least squares
fit to the nonlinear relationships that must hold. The National Geodetic Sur-
vey (NGS) currently has a program under way to adjust the measurements for
the entire North American continent. This computation will involve about
540 thousand variables and 6-5 million relationships. The adjustment of the
geodetic measurements for the entire earth is planned for the future.

See [Golub and Plemmons, 1980, Plemmons, 1979] for details of this
problem. Its main features are:

(i) A natural multilevel block structure. Data and computations are
usually organized by, say, counties, then by states, then by coun-
tries.

(ii) Highly variable accuracy in data. Some survey data is over 50 years
old and much less accurate than recent data.

(iii) Very good approximate solutions available for iteration on the non-
linearities.

(iv) Data is expensive to obtain; the least squares computation costs are
a moderate part of the whole process.

B. The Photogrammetry Problem. When one takes a series of aerial photo-
4 graphs, one neither knows the locations on the photographs nor the locations

of the cameras. One identifies some points on the photographs whose ground
locations are known precisely (these are often marked on the ground so they
show up clearly in the photos). Overlapping photos are taken showing these
points several times; this information is combined with knowledge of the cam-
era properties to create a model of the camera locations. The parameters are
then determined as a least squares solution of this nonlinear model. The
camera parameters and the ground point parameters are obtained in a simul-
taneous solution. In large systems a block elimination scheme is often

-. . .. .... "."" ...... ,."......- . . .......



employed so that a reduced system of only camera parameters is solved first,
followed by a "back solution" for the others. The total number of unknown
parameters (6 per camera, 3 per ground point) can number in the hundreds
for a modest system, and in the thousands for a large system.

Similar computations occur in the precise measurement of the position
and shape of large structures such as radio telescopes.

The main features of this problem are:
(i) There is a natural block structure within the least squares normal

equations' coefficient matrix. Each photograph and each ground
point contribute such a block. Non-zero off-diagonal terms are lim-
ited to a band which arises from the 'local connection" nature (simi-
lar to the geodetic problem) of the photographs and ground point.

(ii) Raw data is collected in two places: (a) obtaining the photographs,
and (b) measuring the point locations on the photographs. Obtain-
ing the data is an expensive process, however individual point meas-
urements may be repeated or added relatively inexpensively. The
least squares computation is the other major step in producing the
final results.

C. The Molecular Structures Problem. The linear least squares problem is in
the inner loop of a complex process depicted by the following (simplified)
steps.

1. Collect Data
Urow single crystals of a pure macromolecular substance of
sufficient size
Obtain x-ray diffraction patterns
Preprocess pictures and use symmetry to enhance data quality

2. Determine approximate molecular structure
Uses various chemical and- pysical procedures plus consider-
able analysis of data

3. Create nonlinear least squares problem
include tasic covalent process of atomic interactions
Include 10 to 15 types of 'restraints! which incorporate vari-
ous chemical and molecular facts.

4. Iterate
Linearize problem by Newton's method
Discard "most" terms in the Jacobian matrix JSolve is*x-b for the Newton step as a linear least squares
problem

5. Reconstruct Computed Molecule
L he numters are postprocessed to produce a visual model

6. Evaluate Computed Molecule

[ be computed models and observed electron densities are
compared visually. If they agree to within the uncertainty of
the nonlinear least squares, the model is accepted
Otherwise:
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identify water and other solvent structures
reorient certain submolecules
add or delete atoms or submolecules
add restraints on the structure
go back to step 3

There are three positional variables for each atom in the molecule; a sim-
ple molecule has a few hundred atoms, a complex one (e.g. a small virus) has
a few million. Current work involves molecules with several tens of
thousands of atoms. This least squares problem is thus embedded in a large,
complex scientific project. The linear least squares problem in the inner loop
may take 10-30 minutes on a Class VI computer and the nonlinear iteration
requires solving many of these. Even so, this is not necessarily the dominant
part of the computation. There may be a stack several feet high of X-ray
films with thousands of information spots on each; runs to preprocess this
data can require over many hours or a day even on a Class VI computer. See
[Hendrickson and Konnert, 1980] for more details on the overall problem and
[Blumdell and Johnson, 1976] for more details on the mathematical model and
least squares problem.

This problem may be interpreted as 2 1/2 dimensional, the molecule is
like a long sausage that winds around itself. Most of the terms in the model
refer to local relationships (positions or angles) along the molecule. With an
appropriate numbering of the atoms, these relationships produces a "local
connection" nature in the least squares problem. All of the important local
connection terms in J are near the main diagonal and the others are negligi-
ble. However, where the sausage folds over itself, there are non-local (in the
numbering system) effects. The folding is not random, one of the major
unsolved problems in molecular structures is how and why these giant
molecules fold. These non-local terms are in the "restraints" and are a crucial
part of determining the structure; they produce "randomly" scattered small
blocks away from the main diagonal of .

The main features of this problem are:
(i) There are several large scale computational steps involved.
(ii) The least squares problem has a local-connection structure modified

by a relatively small number of other terms.

(iii) The blocks in the matrix J are small (3 by 3 to 20 by 20 or so).

(iv) There is only a very rough initial approximation for the nonlinear
problem, it probably has terms missing (at least in the beginning) so
the least squares residuals are not "small".

(v) The outer loop involves someone visually comparing electron den-
sit) maps with the current model, usually using a computer graphics
system. This is the most time consuming aspect of the work.

D. Gravity Field of the Earth. There is a standard model of gravity using
spherical harmonics which is derived from viewing the earth as a homogene-
ous ellipsoidal planet. As more accuracy is desired, one adds more terms to
compensate for the nonhomogeneous mass distribution and the actual shape
of the earth. NASA has a mission GRM (Geopotential Research Mission) to
collect a massive amount of near earth data to be used to determine many
thousands of terms in the expansion in spherical harmonics. This will be a
standard least squares fitting problem, it is not a sparse matrix problem
because the spherical harmonics do not have any "local support" behavior.
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An alternative (not part of NASA's plan) is to use a piecewise polyno-
mial representation of the gravity field. The idea behind this is that the
detailed effects of irregular shapes and masses are not well modeled by spher-
ical harmonics and one is going to obtain the usual slow convergence proper.
ties of polynomial and trigonometric approximations will lead to a least
squares problem with quite regular sparsity structure. For more details on
this problem see [NASA,1982], [Moore et al,1982].

The main features of this problem are:
(i) A massive amount of data, very expensive to collect.
(ii) Very regular and uniform structure in the data, the problem and

the underlying models.
(iii) The classical model leads to a full matrix least squares problem.
(iv) The possible piecewise polynomial model leads to a sparse least

squares problem with a very regular structure. The blocks in the
matrix are relatively small, about 10 by 10.

E. The least Squares Method for Partial Differential Equations (PDEs). There
is a classical least squares (finite element) method for solving PDEs that is
rarely used in practice. It is closely related to other widely used methods (e.g.
collocation and Galerkin) and the probable reason for its "neglect" is that
people feel that it offers no apparent advantage over the more standard
methods. See [Rice, 1983] for a discussion of this method.

This method would be used primarily with piecewise polynomial basis
functions which would lead to least squares problem with a regular block
sparsity structure, similar to that which appears in the more standard PDE
methods. The number of unknowns can easily reach 1 million for three
dimensional PDEs, there would be a small number (1 to 10) of equations per
unknown.

The principal features of this problem are:
(i) There is very little data, the equations are generated mathemati-

cally.
(ii) There is a very regular block sparsity structure to the problem. The

blocks are small to moderate in size (4 by 4 to 50 by 50).
(iii) The number of equations can be very large, there are applications

where one solves a large sequence of very similar problems.

F. Tomography. This is a specialized application where one reconstructs an
object by taking X-ray cross sections. It is similar to data fitting in that one
has a fixed number of data from a continuum; it differs from data fitting in
that one observes various linear functionals (e.g. integrals) from the contin-
uum rather than actual values. See [Herman, 1976, 1978 and 1980] for more
information.

The principal characteristics of these problems are:
(1) The systems of equalities and inequalities are huge, order about a

million.
(2) The sparsity is somewhat haphazard, less than 1 per cent of the

matrix elements are non-zero.
(3) The principal computational tool is the row-action method, see

(Censor, 1981].

4W8
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G. Force Method In Structural Analysis.
There are two principal methods of matrix structural analysis, the dis-

placement (or stiffness) method and the force (or flexibility) method. The
force method has certain advantages for multiple redesign problems or non-
linear elastic analysis because it allows the solution of modified problems, by
least squares computations, without restarting the total computation from the
beginning. This can result in significant savings for large scale problems. See
[Kaneko, Lawo and Thierauf, 1982] and [Kaneko and Plemmons, 1984] for
details.

The main features of this problem are:
i. The force method consists of two stages. Stage I involves the com-

putation of a basis matrix B for the null space of the equilibrium
matrix E for the structure and stage 2 involves the solution of a cer-
tain least squares problem with B serving as the observation matrix.
B can be dense even though E is sparse, depending upon the
method for computing B.

ii. There is very little data. The elements of E are generated
mathematically and B is computed from E.

iii. Engineering substructuring methods can lead to a block angular
form for the least squares matrix B, similar in form to those of the
observation matrices in the Geodetic and Photogrammetry prob-
lems.

H. Very Long Base Line Problem. The object is to measure astronomical dis-
tances by using interferometer methods with base lines that are thousands of
miles (using geographically separated radio telescopes) or millions of miles
(using observations taken at differenit points on the earth's orbit around the
sun). There are enormous quantities of data that are relatively inaccurate.

I. Digital Terrain Modeling. The digital terrain modeling problem is a combi-
nation of the photogrammetry problem discussed earlier and the surface
fitting problem discussed next. The terrain information is obtained by photo-
grammetry and then a mathematical model is obtained by another least
squares fit. In some application the modeling can be done locally which
decouples the latter least squares problem and makes it simply a large
sequence of independent, small least squares problems.

J. Surface Fitting. One has a physical surface where many positions are
known. The surface is modeled by piecewise polynomials of modest degree (I
to 3) joined with some smoothness (continuity, perhaps less, perhaps one or
two continuous derivatives). The model has parameters which are determined
by a least squares fit to the observed data.

The size of these problems commonly varies from rather small, say a few
dozen parameters, up to fairly large, perhaps a thousand parameters. One
can, of course, visualize almost arbitrarily large problems, especially if one
goes to three dimension problems. The matrices involved have the block
structure expected from a "local basis" model of the surface. See [Schumaker,
1978].

The principal characteristics of these problems are:
(i) Usually modest to moderate in size, that is 50 to 1000 unknowns and

2 to 5 observations per unknown.

0 409
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(ii) A fairly regular block structure in the matrices with modest sizedblocks, say 4 by 4 to 16 by 16.

K. Cluster Analysis and Pattern Matching. Some pattern recognition algo-
rithms are essentially least squares problems (usually nonlinear). One usually
has a modest sample of values and a very flexible model with a relatively small
number of parameters; a few hundred values and 5 to 50 parameters are com-
mon. As we become more adept at these problems, we can expect the size of
the problem to grow very substantially.

The principal characteristics of these problems are:
(i) Modest to moderate in size, but potentially quite large.
(ii) Considerable variation in structure as widely different models may

be used. Many models probably give full matrices.

3. METHODS AND MATRIX STRUCTURES
The linear least squares problem is formulated mathematically with an n

by m matrix A =(aj), unknowns xj, i =1 to m and data bj , j =I to n. One wishes
to solve A x =b, but n > m so this system is generally inconsistent. Thus one
determines the least squares solution x so that

42

ajtix, -bj = lAx-b 112 = minimum
j-1 -

In the discussion that follows, we assume that n>m and m is large. See [Law-
son and Hanson, 1974], [Rice, 1981] for more information.

A. The Normal Equations. A simple analysis shows that the least squares solu-
tion x satisfies the linear system

ArAx -A r b

which is an m by m system with a symmetric and (normally) positive definite
coefficient matrix ArA. The total work for this solution method is, including
forming ATA, m2n/2 + m3/6 multiplications. The main advantage of this
approach is simplicity, the disadvantages are (i) the computation might be less
stable numerically and (ii) any sparsity structure in A is usually destroyed.

B. The Residual Equations. Let rj = afjxg-bj be the residual of the j-th

equation. Then a simple analysis shows that x and r solve the system

This system is larger than the normal equations, (n +m) by (n +m), but retains
the sparsity of A. This system is indefinite.

C. Orthogonalizatlon. One may apply an ortbogonal matrix Q to Az-b to
obtain

410
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Q Ax = Qb

and determine Q so that QA =R is 'upper triangular'. That is

R= T

where T is square and upper triangular. One then solves Ti = b- where b- is
the first n elements of Qb. The elementary reflections or elementary rotation
matrices are usually recommended to construct Q. See [Lawson and Hanson,
1978] or [Rice, 1981] for more details. The total work for this solution
method is n2n -m 3/6. The main advantages of this method are numerical sta-
bility and the potential of using any sparity that A might have, the disadvan-
tage is that it is twice as much work as the normal equations (assuming that
m2n dominates m3, as it usually does).

D. Iteration, Splitting and Conjugate Gradient Methods. Since the normal
equations are symmetric and positive definite, most standard iteration
methods are applicable. The convergence of such methods can often be
accelerated by splitting the problem. Consider a linear system C z =d written
in the form

Mz -Nx +d

Thus C is split into M -N and the idea is to choose M so that Mz.-f is easy to
solve and M- 1 is a good (reasonable?) approximation to C'. Various itera-
tions can then be defined to use M in a useful way, the simplest is the itera-
tion

M 0~+ =N z(A) + d

Choosing M as diag(C) gives the Jacobi method, choosing M as the lower tri-
angular part of C gives Gauss-Seidel.

A particularly effective iteration is the conjugate gradient method where
one takes

M (k) = (d - C &(0)) = residual at k -th iteration
(k 1) 1 a -1) + WA +1((1k z W) + ZW _ O-t1)

The parameters A'k and "k are determined by separate computations, see
-0 [Concus, Golub and O'Leary, 1976] for further details.

Iteration with splitting (and the conjugate gradient method in particular)
are attractive for the residual equations form of the problem, because the
sparsity of A is completely preserved. Even though the residual form involves
a much larger matrix than the normal form, it might require much less
storage in a computation if the sparsity of A is exploited.

" •411
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4. DISCUSSION: ISSUES AND RESPONSES
A set of issues was prepared before the workshop and they received

extensive discussion. Issues as originally presented are listed along with a
summary of the discussions.

PROBLEMS

A. Do the problems from different areas have similarities?

There is a surprising amount of similarity. The matrix A can almostalways be put in the following form (sometimes called the dual block angular

form):

A1  B1

A1  B2
A3  B3

Ak Bk

D

This reflects a "local connection" structure in the underlying pbysical problem
(the spherical harmonics expansion of gravity is one exception). There is a
wide variation in the number and size of the blocks. Some problems have
large block with k modest in size (10-100) while others have much smaller
blocks but many more of them. A number of the problems have two levels of
sparsity structure. That is, the blocks A, and/or B, are themselves large sparse
matrices, usually with this same general pattern of sparsity. There might be
some difference in the sparsity patterns between the two levels. The molecu-
lar structures problem has this structure with a relatively small number of
other blocks scattered through the matrix.

B. What is the scientific significance of these problems?

Some of these problems are integral parts of large national scientific pro-
grams (e.g. geodetic survey, very long. base line and gravity model). Others
are ubiquitous in some important areas (e.g. PDE computations, digital terrain
modeling, structural analysis, photogrammetry). Still others are integral parts
of the developing frontiers of significant 'scientific research programs (e.g.
molecular structures, tomography, pattern analysis).

C. Are there very large least squares problems of potential interest that have not
yet been seriously attempted?

Three problems were mentioned: PDE computations, geological structure
(the analog of the gravity problem, but below the surface of the earth) and
cell biology (the natural long range extension of the molecular structures

.- problem).

METHODS
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D. What methods are thought to be the most suitable for these problems?

There is no clear "winner' yet. The exploitation of sparsity is not yet
thoroughly explored; different patterns of sparsity give the advantage to
different methods. The normal equations and conjugate gradient (applied to
the residual equations) are the most widely used. A drawback of the conju-
gate gradient method is the difficulty in simultaneously obtaining variance
and covariance information.

The impact of vector computers will be substantial but, again, no clear
pattern has yet emerged. These calculations deal primarily with very long,
very sparse vectors. Substructuring is naturally applicable to these problems
for the multiprocessor computers. Again, the algorithmic questions are
mostly open.

E. Is it practical to use the same methods - or same algorithms - or same
software - in different applications areas?

There are definite similarities in the problems from different application
areas; this implies that similar methods are applicable. There is not enough
generally used software to give as real experience in applying the same
software in different applications areas. However, limited experience plus
informed conjecture suggests that some software can be used widely. Well
designed software could be modified or parameterized to give good efficiency
in a variety of applications.

F. How much exchange of know-how is there between scientists in different
application areas? between numerical analysts or computer scientists and
scientists?

There is some exchange of know-how, but it is not systematic nor uni-
form. The amount of isolation among groups interested in essentially the
same problem seems to be typical of science in general.

COMPUTATIONS

G. Is the vectorization of the linear algebra the major step in adapting methods
to current supercomputers?

There is definitely much more to be done than to vectorize the linear
algebra (although this must be done also). The principal task is to reorganize
the algorithms so as to exploit the natural sparsity in the problems and yet
also exploit the vector processing power of the supercomputers. Experiences
were reported where it was as difficult to overcome "non-numerical"

4 bottlenecks (like 110 or page thrashing) as to make the arithmetic run fast.
The opinion was expressed that obtaining efficient, well organized software is
a bigger hurdle than devising vector algorithms or reorganizing algorithms to
be vectorizable.

Current supercomputers were strongly criticized for inadequate Fortran
4 support. To obtain good performance on Cyber 205 or Cray I requires a lot

of detailed idiosyncratic changes in the codes which renders them totally use-
less for any other computer. The view was expressed that many people do not
want to invest years in codes that cannot be used by their colleagues and
which become useless once a newer machine is acquired.

-- 413



H. Is least squares computation the major part of the total computations?

The least squares computation is almost always in the "inner loop" of the
computations and thus a significant computational expense. However, it is
rarely the dominant part of the computation. Input/output, data processing,
preprocessing and postprocessing are also significant computations and some
app!ications also involve significant numerical computations of other types
(e.g. nonlinear systems of equations).

I. What is the nature of the difficulty in getting the data for very large least
squares computations?

There are a couple of areas (PDEs and quantum mechanics) where
obtaining the data is a minor part of the problem. For most applications, this
is a major part of the problem and for some (e.g. geodetic survey, molecular
structures determination, and gravity field analysis) the cost of obtaining the
data completely dominates the computational (and programming) costs.

J. How does programming supercomputers for very large least squares computa-
tions compare with programming ordinary machines?

A high level of general dissatisfaction was expressed for programming
the current Class VI machines. They were described as 'a pain'; the resulting
software is totally non-transportable and generally obscure. The attached
array processors are no better. This is not inherently the nature of supercom-
puters; one participant had considerable experience with the TI-ASC machine
and felt it was much more "usable" than his current experience with the
Cyber 205.

K. Is computer time a major bottleneck in getting results for these problems?

Yes, but it is not dominant in most cases. The preprocessing and post-
processing of results tends to require a lot of human attention and involve
delays of various kinds (e.g. getting files from one machine to another, getting
output plotted, making tapes, etc.). These activities slow down the whole pro-
cess much more than the few hours that one is waiting for the "scientific com-
putations" to be done. One sometimes has to wait many hours (or even days)
to obtain adequate amounts of computer time.

L. Is programming effort a major bottleneck in getting results for these prob-
lems?

Yes. It is sometimes more of a bottleneck than computer time, but still
usually not the dominant factor. There is often considerable difficulty in
finding people who have the desired knowledge of supercomputers, program-

ming and the application area.

THE FUTURE

M. What are the prospects for being able to solve the very large least squares
problems at the frontiers of science? Do we need much faster computers - or
much faster algorithms - or both?
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The prospects are good. Both faster computers and faster algorithms are
needed; neither one obviously dominates the other. It is just as important to
have better user interfaces, better languages and supporting tools as it is to
have faster computers and algorithms.

N. Is it more important to make the computer faster or easier to use?

The question is misleading; the critical task is to make the very fast com-
puters easy to use.

0. What would be the scientific impact of much greater computational powers in
these areas.

It would do a lot of good (no specific list of impact areas was generated).
Perhaps the greatest impact would come from the ability to do conceptually
straight forward things better. A great deal of effort is now required to solve
a lot of problems that have little technical difficulty or novelty; this is taking
away from the time available for problems that require a lot of thought.

P. What are the prospects of discovering significantly better supercomputer
algorithms for least squares?

They seem good for two reasons. First, one can see that it is possible to
devise better ways of handling sparsity, data and memory space. Second, his-
tory tells us that it is unwise to believe that better methods will not appear.

WRAP-UP OBSERVATIONS

Q. There is a strong need for a flexible package (or several packages) of
sparse least squares routines

R. Supercomputer hardware is not going to stabilize. People cannot rewrite
and tailor massive codes for each new architecture (never mind variances
on a theme) that appears. Thus scientists must keep programs expressed
at high levels and processors for these languages must be developed for
each new architecture.

S. The concept of a set of "national resource supercomputer access sites is
not viable without reasonable transportability of working programs
among the supercomputers.

5. WORKSHOP PARTICIPANTS

The principal participants in the workshop are listed below with their
relevant field of expertise and affiliation.

James Bethel (photogrammetry) Purdue University
Iquacio Fita (molecular structures) Purdue University
Dennis Gannon (supercomputers) Purdue University
Gene Golub (numerical linear algebra) Stanford University
Wayne Hendrickson (molecular structures) Naval Research Laboratory
Greg Kramer (applications programmer) Purdue University
Charles Lawson (numerical linear algebra) Jet Propulsion Laboratory
Robert Plemmons (matrix computation, geodesy) North Carolina State
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John Rice (supercomputers) Purdue University
Michael Rossmann (molecular structures) Purdue University
Ahmed Sameh (supercomputers) University of Illinois
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